
3. daisy:35 (Barnum, Sean)

4. daisy:345 (Gegick, Michael)

8. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.

9. MacLennan, Bruce. Principles of Programming Languages. Holt,Rinehart and Winston, 1987.

Defense in Depth
Sean Barnum, Cigital, Inc. [vita3]
Michael Gegick, Cigital, Inc. [vita4]

Copyright © 2005 Cigital, Inc.

2005-09-13

Layering security defenses in an application can reduce the chance of a successful attack. Incorporating
redundant security mechanisms requires an attacker to circumvent each mechanism to gain access to a
digital asset. For example, a software system with authentication checks may prevent an attacker that has
subverted a firewall. Defending an application with multiple layers can prevent a single point of failure
that compromises the security of the application.

Detailed Description Excerpts

According to Viega and McGraw [Viega 02] in Chapter 5, "Guiding Principles for Software Security,"
in "Principle 2: Practice Defense in Depth" from pages 96-97:8

The idea behind defense in depth is to manage risk with diverse defensive strategies, so that if one
layer of defense turns out to be inadequate, another layer of defense will hopefully prevent a full
breach. This principle is well known, even beyond the security community; for example, it is a
famous principle for programming language design: Defense in Depth: Have a series of defenses
so that if an error isn't caught by one, it will probably be caught by another.9

Let's go back to our example of bank security. Why is the typical bank more secure than the
typical convenience store? Because there are many redundant security measures protecting the
bank, and the more measures there are, the more secure the place is.

Security cameras alone are a deterrent for some. But if people don't care about the cameras, then a
security guard is there to physically defend the bank with a gun. Two security guards provide even
more protection. But if both security guards get shot by masked bandits, then at least there's still a
wall of bulletproof glass and electronically locked doors to protect the tellers from the robbers. Of
course if the robbers happen to kick in the doors, or guess the code for the door, at least they can
only get at the teller registers, since we have a vault protecting the really valuable stuff.
Hopefully, the vault is protected by several locks, and cannot be opened without two individuals
who are rarely at the bank at the same time. And as for the teller registers, they can be protected
by having dye-emitting bills stored at the bottom, for distribution during a robbery.

Of course, having all these security measures does not ensure that our bank will never be
successfully robbed. Bank robberies do happen, even at banks with this much security.
Nonetheless, it's pretty obvious that the sum total of all these defenses results in a far more
effective security system than any one defense alone would.

The defense in depth principle may seem somewhat contradictory to the "secure the weakest link"
principle, since we are essentially saying that defenses taken as a whole can be stronger than the

Defense in Depth 1
ID: 347 | Wersja: 5 | Data: 06-06-07 15:18:29

daisy:35
daisy:345

10. #refs

weakest link. However, there is no contradiction; the principle "secure the weakest link" applies
when components have security functionality that does not overlap. But when it comes to
redundant security measures, it is indeed possible that the sum protection offered is far greater
than the protection offered by any single component.

A good real-world example where defense-in-depth can be useful, but is rarely applied, is in the
protection of data that travel between various server components in enterprise systems. Most
companies will throw up a corporate-wide firewall to keep intruders out. Then they'll assume that
the firewall is good enough, and let their application server talk to their database in the clear.
Assuming that the data in question are important, what happens if an attacker manages to
penetrate the firewall? If the data are also encrypted, then the attacker won't be able to get at them
without breaking the encryption, or (more likely) breaking onto one of the servers that stores the
data in an unencrypted form. If we throw up another firewall, just around the application this time,
then we can protect ourselves from people who can get inside the corporate firewall. Now they'd
have to find a flaw in some service that our application's sub-network explicitly exposes,
something we're in a good position to control.

Defense in depth is especially powerful when each layer works in concert with the others.

According to Howard and LeBlanc [Howard 0210] in Chapter 3, "Security Principles to Live By," in
"Use Defense in Depth," from pages 59-60:

Defense in depth is a straightforward principle: imagine your application is the last component
standing and every defensive mechanism protecting you has been destroyed. Now you must
protect yourself. For example, if you expect a firewall to protect you, build the system as though
the firewall has been compromised.

Unfortunately, a great deal of software is designed and written in a way that leads to total
compromise when a firewall is breached. This is not good enough today. Just because some
defensive mechanism has been compromised doesn't give you the right to concede defeat. This is
the essence of defense in depth: at some stage you have to defend yourself. Don't rely on other
systems to protect you. Put up a fight because software fails, hardware fails, and people fail.
People build software, people are flawed, and therefore software is flawed. You must assume that
errors will occur that will lead to security vulnerabilities. That means the single layer of defense in
front of you will probably be compromised, so what are your plans if it is defeated? Defense in
depth helps reduce the likelihood of a single point of failure in the system.

Important: Always be prepared to defend your application from attack because the security
features defending it might be annihilated. Never give up.

Example

Let's quickly revisit the castle example from the first chapter. This time, your users are the
noble family of a castle in the 1500s, and you are the captain of the army. The bad guys are
coming, and you run to the lord of the castle to inform him of the encroaching army and of
your faith in your archers, the castle walls, and the castle's moat. The lord is pleased. Two
hours later you ask for an audience with the lord and inform him that the marauders have
broken the defenses and are inside the outer wall. He asks how you plan to further defend
the castle. You answer that you plan to surrender because the bad guys are inside the castle
walls. A response like yours doesn't get you far in the armed forces. You don't give up--you
keep fighting until all is lost or you're told to stop fighting.

Defense in Depth 2
ID: 347 | Wersja: 5 | Data: 06-06-07 15:18:29

#refs

Here's another example, one that's a little more modern. Take a look at a bank. When was
the last time you entered a bank to see a bank teller sitting on the floor in a huge room next
to a massive pile of money. Never! To get to the big money in a bank requires that you get
to the bank vault, which requires that you go through multiple layers of defense. Here are
some examples of the defensive layers:

• There is often a guard at the bank's entrance.

• Some banks have time-release doors. As you enter the bank, you walk into a bulletproof
glass capsule. The door you entered closes, and after a few seconds the glass door to the
bank opens. This means you cannot rush in and rush out. In fact, a teller can lock the
doors remotely, trapping a thief as he attempts to exit.

• There are guards inside the bank.

• Numerous closed-circuit cameras monitor the movements of every one in every corner
of the bank.

• Tellers do not have access to the vault. (This is an example of least privilege, which is
covered next.)

• The vault itself has multiple layers of defense, such as:

• It opens only at certain controlled times.

• It's made of very thick metal.

• Multiple compartments in the vault require other access means.

According to NIST [NIST 01] in Section 3.3, "IT Security Principles," from page 9:

Implement layered security (ensure no single point of vulnerability). Security designs should
consider a layered approach to address or protect against a specific threat or to reduce a
vulnerability. For example, the use of a packet-filtering router in conjunction with an application
gateway and an intrusion detection system combine to increase the work-factor an attacker must
expend to successfully attack the system. Adding good password controls and adequate user
training improves the system's security posture even more.

The need for layered protections is especially important when commercial-off-the-shelf (COTS)
products are used. Practical experience has shown that the current state-of-the-art for security
quality in COTS products does not provide a high degree of protection against sophisticated
attacks. It is possible to help mitigate this situation by placing several controls in series, requiring
additional work by attackers to accomplish their goals.

According to Schneier [Schneier 00] in "Security Processes":

Provide Defense in Depth.

Don't rely on single solutions. Use multiple complementary security products, so that a failure in
one does not mean total insecurity. This might mean a firewall, an intrusion detection system and
strong authentication on important servers.

References

[Howard 02] Howard, Michael & LeBlanc, David. Writing Secure Code. 2nd ed.

Defense in Depth 3
ID: 347 | Wersja: 5 | Data: 06-06-07 15:18:29

1. mailto:copyright@cigital.com

Redmond, WA: Microsoft Press, 2002.

[NIST 01] Engineering Principles for Information Technology Security. Special
Publication 800-27. US Department of Commerce, National Institute of
Standards and Technology, 2001.

[Schneier 00] Schneier, Bruce. "The Process of Security." Information Security Magazine.
April, 2000.
http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000.

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid
Security Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005. Cigital-authored documents are sponsored by the U.S. Department of
Defense under Contract FA8721-05-C-0003. Cigital retains copyrights in all material produced under
this contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
these documents, or allow others to do so, for U.S. Government purposes only pursuant to the copyright
license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital,
including information about “Fair Use,” contact Cigital at copyright@cigital.com1.

Pola

Nazwa Warto##

Copyright Holder Cigital, Inc.

Pola

Nazwa Warto##

is-content-area-overview false

Content Areas Knowledge/Principles

SDLC Relevance Architecture
Design

Workflow State Publishable

Defense in Depth 4
ID: 347 | Wersja: 5 | Data: 06-06-07 15:18:29

http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000
mailto:copyright@cigital.com

